Главная страница «Первого сентября»Главная страница журнала «Биология»Содержание №24/2007

ЗООЛОГИЯ

Н.Ю. ФЕОКТИСТОВА

Дистанционное «осязание»

Боковая линия, или как ее еще часто называют, сейсмосенсорная система, имеется у большинства низших позвоночных (круглоротых), всех классов рыб и живущих в воде амфибий.

Функции боковой линии долгое время оставались загадочными и непонятными. И это несмотря на то, что она была хорошо известна анатомам и морфологам начиная с XVI в. Сначала предполагалось, что боковая линия предназначена для выработки слизи, обильно покрывающей тело рыбы. Однако в начале XIX в. датским анатомом Людвигом Якобсоном (кстати, в 1811 г. он же впервые описал вомероназальный орган у млекопитающих), а затем и Лейдигом на основании детальных морфологических исследований было сделано заключение, что боковая линия – это сенсорное образование. В XIX в. русский исследователь П.И. Митрофанов на основании изучения обширного материала по развитию миног, акуловых и костистых рыб впервые показал общность происхождения органов боковой линии и слуховой системы. В начале ХХ в. эти работы были продолжены Н.К. Кольцовым, Д.К. Третьяковым и В.Владыковым. Также в начале ХХ в. известный американский физиолог Паркер установил, что чувствующие образования (невростомы) боковой линии являются механорецепторами. Спустя еще несколько лет с помощью экспериментов было выяснено, что боковая линия служит рыбам для восприятия водных потоков и стимулов, исходящих от подвижных подводных объектов. Впоследствии справедливость этих выводов была подтверждена на большом количестве примеров, в том числе в работах известного голландского ученого Свена Дайкграафа. Именно он предложил называть чувство, обеспечиваемое боковой линией, «дистантным осязанием», т.к. присутствие некоего объекта обнаруживается рыбами не за счет прямого контакта с ним, а опосредованно, благодаря восприятию возмущений, которые этот объект создает в водной среде.

Общий вид боковой линии

Общий вид боковой линии

Чувствующие образования боковой линии сейчас называются нефромастами. Они имеют эпидермальное происхождение и состоят из двух типов клеток – волосковых и опорных. В одном нефромасте может быть от нескольких десятков до нескольких сотен и даже тысяч волосковых клеток, каждая из которых окружена опорными клетками. Волосковая клетка несет на своей свободной поверхности один длинный вырост и от 30 до 150 коротких. Сверху каждая волосковидная клетка прикрыта как бы прозрачной шапочкой – капсулой. В основании волосковой клетки имеются синаптические контакты с афферентными и эфферентными нервными волокнами. Афферентные нервные волокна, по которым электрический сигнал поступает в нервные центры боковой линии, подходя к нефромасту, теряют миелиновую оболочку и сильно ветвятся, образуя клубочек. Каждое из нервных волокон контактирует не с одной, а с несколькими одинаково ориентированными волосковыми клетками. Центральная регуляция волосковых клеток осуществляется благодаря эфферентным нервам.

Схема волосковой клетки

Схема волосковой клетки

Нефромасты бывают двух типов – одни лежат свободно на поверхности кожи, а другие располагаются в специальных каналах. Каналы могут быть эпидермальными и костными, и находятся как на туловище, так и на голове рыбы. Наружу каналы открываются специальными порами.

Нефромасты – свободные, канальные или и те и другие одновременно, имеются у всех видов рыб без исключения. По бокам тела рыб может проходить как один боковой канал, так и несколько (от 4 до 6 и даже более). Структурные особенности боковой линии (число и расположение каналов, изгибы и их протяженность, число пор и пр.) являются устойчивыми признаками и часто используются в качестве ключевых при диагностике видовой принад-лежности рыб, определении внутри- и межвидовых родственных связей.

Строение боковой линии непосредственно связано с ее функциями. Рецепторы этого сенсорного органа способны воспринимать колебания волн, лежащих в низкочастотном диапазоне – от 1–5 до 100–200 Гц. При этом зоны максимальной чувствительности канальных и свободных нефростомов различаются: первые более чувствительны к колебаниям от 20–30 до 100 Гц, а вторые – от 2–5 до 10–15 Гц.

Основные структурные элементы нефромаста

Основные структурные элементы нефромаста

Интересно, что диапазон чувствительности боковой линии частично совпадает с диапазоном слуховой системы рыб, однако зоны максимальной чувст-вительности этих двух органов не перекрываются. Однако основное различие между слуховой системой и сейсмосенсорной системой боковой линии заключается в том, что боковая линия воспринимает волны смещения, распространяющиеся от подводных источников акустических колебаний, а слуховая система реагирует на преобразованные в отолитовых органах или в плавательном пузыре волны давления. Собственно звук с помощью боковой линии восприниматься не может, тело рыб акустически прозрачно, т.е. под воздействием пришедшей акустической волны одинаковым образом колеблется тело рыбы, купула невромастов и окружающая вода. В слуховом же органе (лабиринте) стимуляция рецепторных клеток достигается благодаря инерции отолитов, почти в три раза более плотных, чем тело рыбы.

Зачем же нужны органы боковой линии? Сейчас уже совершенно определенно можно сказать, что эта система принимает участие в самых важных формах поведения: питании, размножении, защитном и миграционном поведении. Именно эта система позволяет рыбам ориентироваться в полной темноте. При достаточной освещенности ведущая роль принадлежит все же зрению. Но у рыб с ночным типом активности, или живущих в пещерах, или держащихся у самого дна, информация, поступающая от органов боковой линии, всегда является ведущей.

О значении боковой линии в пищевом поведении рыбы – поисках добычи – могут свидетельствовать расположение каналов боковой линии и их размеры, а также количество невромастов. У многих видов наиболее крупные и хорошо заметные каналы располагаются на голове, что позволяет рыбе получать информацию о расположении и перемещении кормовых объектов около рта и, соответственно, совершать максимально результативные броски за жертвой.

Благодаря органам боковой линии многие рыбы, и прежде всего пелагические, питающиеся планктоном, могут кормиться даже в полной темноте или в том случае, если они слепы. Слепая рыба делает прицельный бросок на дафнию, проплывающую мимо. И это результат того, что рыба ощущает органами боковой линии колебания частотой всего в 3 Гц, которые производит дафния.

Более того, благодаря органам боковой линии рыбы могут находить добычу даже в донном субстрате. Так, в специальных экспериментах бычки подкаменщики (C.bairbi) безошибочно обнаруживали скрытый в грунте вибратор, генерирующий колебания с частотой 10 Гц и имитирующий перемещение в грунте бентосных организмов. Реакция на деятельность вибратора у бычков наблюдается только в том случае, если рыба нижней челюстью касается субстрата и задерживает на секунду дыхание. Если в этот момент она улавливает сигнал, то коротким и быстрым броском разворачивается в его сторону. После этого следует серия коротких бросков по направлению к вибратору, причем после каждого броска, включая первый, рыба обязательно прикасается нижней челюстью к субстрату. Реакция заканчивается прицельным и точным захватом грунта в месте расположения источника колебаний.

Относительные размеры свободных (а) и канальных (б, в) нефромастов у бычка подкаменщика

Относительные размеры свободных (а) и канальных (б, в) нефромастов у бычка подкаменщика

У рыб, которые питаются упавшими в воду насекомыми, боковая линия в ночное время обеспечивает не только получение сигнала о пище, но и позволяет определять направление и расстояние до нее. И это несмотря на то, что существует ряд физических различий между поверхностными волнами и волнами, распространяющимися в воде. В целом скорость распространения поверхностных волн в 1000 раз ниже, чем у волн, распространяющихся в воде. Кроме того, поверхностные волны слабо проникают в толщу воды. Определение направления на жертву – упавшее на воду насекомое – происходит за счет того, что волны приходят к симметричным нефромастам, расположенным с разных сторон головы рыбы в разное время и с разной амплитудой. А определение расстояния достигается за счет способности анализировать спектральный состав поверхностных волн. Бьющееся на воде насекомое генерирует колебания в диапазоне гораздо более широком, чем колебания поверхности воды, возникающие под воздействием ветра или производимые рыбами. Но уже на очень небольшом расстоянии спектр сигнала изменяется – его высокочастотные составляющие быстро затухают. По мере удаления от источника колебаний стремительно уменьшается и их амплитуда. Анализируя частотные, временные и амплитудные параметры сигнала, достигающего рецепторов, расположенных на разных сторонах тела или участках тела, рыба координирует угол своего броска с точностью до 5°, реагируя на сигнал с расстояния от 0,5 м до 1 м.

Спонсор публикации статьи специализированный автосервис и интернет-магазин «Фара-Фонарь». Компания предлагает услуги по ремонту фар и фонарей иностранных и русских производителей, сложное восстановление автомобильной оптики, быстрая и качественная замена, а также полировка, регулировка и устранение запотевания. Высококвалифицированные специалисты, профессиональная диагностика и ремонт неисправностей, доступные цены. В интернет-магазине компании Вы сможете приобрести фары на свой автомобиль (фара левая Land Rover Range Rover 4), доставка по всей России, возможность безналичного расчёта. Подробную информацию Вы найдёте на сайте: fara-fonar.ru. (+7 (499) 450-78-28. Москва, 1-й Котляковский пер., 3к1. info@fara-fonar.ru)

Каналы боковой линии на голове у обыкновенного ерша

Каналы боковой линии на голове у обыкновенного ерша

Не менее важна для рыб и информация о приближающемся хищнике. Как правило, крупные рыбы создают сильные низкочастотные возмущения, которые рыбы-жертвы легко улавливают органами боковой линии (и прежде всего – свободными нефромастами). Ответ на подобные сигналы весьма оперативен и прост: рыбы-жертвы или затаиваются, или стремительно уплывают. Защитная поведенческая реакция на высокоамплитудные низкочастотные колебания врожденная и начинает проявляться с появлением первых свободных нефромастов у молоди, еще не начавшей активно питаться, или в самом начале личиночного периода.

Важную роль играет боковая линия в нерестовом и родительском поведении. Нерест у многих рыб сопровождается демонстрацией характерных поз, танцем или специфическими вибрациями. Естественно, что при этом возникают низкочастотные колебания, которые обеспечивают как синхронность нерестового поведения, так и собственно нерест. И хотя участие боковой линии в нерестовом поведении сейчас очевидно, долгое время оно лишь предполагалось, и только относительно недавно было доказано экспериментально. Опыты были проведены на нерке (Oncorhynchus nerka). У этого вида нерест сопровождается весьма характерными движениями как самок, так и самцов. Резкие и сильные изгибы самки, находящейся в гнезде, вызывают у самца, стоящего ниже по течению, бросок к ней и характерное мелкое дрожание тела, которое в свою очередь вызывает ответную дрожь у самки, которая сигнализирует о своей готовности выметать икру. В ответ на этот призыв самец приближается вплотную, широко раскрывает рот и, активно вибрируя, высвобождает порцию молок. Самка, в свою очередь выметывает икринки. Во время изгибов тела и дрожания самец и самка производят колебания с частотой от 2 до 37 Гц, но каждый пол – в своем диапазоне. Эксперименты, проведенные на карликовых самцах нерки в лабораторных условиях, показали, что полный цикл нерестового поведения они демонстрируют только в том случае, если им показывают модель самки соответствующего размера, вибрирующую на строго определенных частотах.

Что касается родительского поведения, то, например, самцы всем известной бойцовой рыбки, или петушка (Betta splendens), в случае появления какой-либо опасности привлекают мальков к себе специфическими сигналами, воспринимаемыми боковой линией молоди. Петушок принимает наклонную позу, касается поверхности воды головой и начинает быстро трепетать грудными плавниками. Это приводит к возникновению поверхностной волны, которую молодь воспринимает на расстоянии 40 см и тут же начинает плыть к источнику сигнала – родителю. Подобная реакция мальков проявляется и в ответ на искусственно генерируемые сигналы с частотой 8–10 Гц и амплитудой не менее 13 мкм.

Амплитудные, динамические и частотные характеристики поверхностных волн,генерируемых упавшими на воду летающими насекомыми (А), рыбами (Б) и ветром (В)

Амплитудные, динамические и частотные характеристики поверхностных волн,
генерируемых упавшими на воду летающими насекомыми (А), рыбами (Б) и ветром (В)

Большинство рыб живет в текущей воде. Способность определять силу потока, направление и структуру имеет важное значение для их существования. Особенно важна такая способность для рыб, живущих в высокотурбулентных потоках, либо обитающих в полной темноте, либо ведущих ночной образ жизни. Восприятие рыбами течения осуществляется благодаря свободным нефромастам.

Благодаря боковой линии рыбы способны в темноте обнаруживать препятствия и не сталкиваться с ними. Впервые подобное предположение было высказано в 1963 г. Дайкграафом, а затем нашло замечательное подтверждение в экспериментах с пещерными рыбами. Ученые установили, что эти рыбы осуществляют постоянный гидродинамический мо-ниторинг среды, сравнимый с эхолокацией рукокрылых или активной электролокацией слабоэлектрических рыб. Перемещаясь вперед, рыба распространяет волновые колебания и создает вокруг себя гидродинамическое поле, которое нарушается любыми близко расположенными объектами, отражающими эти колебания. Характер искажения поля зависит от размеров и формы объекта, а при его подвижности – от скорости перемещения, особенностей плавания и т.п. В результате лоцирования у рыб создается «гидродинамический образ» окружающей среды, что в значительной степени облегчает им ориентацию в условиях полной темноты.

Мы рассмотрели строение и функции боковой линии у рыб. Однако эта структура, как мы отмечали в начале нашего рассказа, есть и у плавающих в воде амфибий (как у личинок, так у взрослых земноводных, ведущих водный образ жизни). У тех амфибий, которые после окончания личиночного периода переходят к жизни на суше, органы боковой линии исчезают.

В отличие от рыб, у амфибий нефромасты разбросаны по всему телу (более густо они расположены на голове) и лежат на поверхности кожи или в мелких ямках. Нефромасты земноводных представляют собой утолщения небольших участков эктодермы, в которых среди опорных клеток лежат грушевидные чувствующие клетки, снабженные выростами. Снизу каждая такая клекта оплетена окончаниями блуждающего нерва. Функции органов боковой линии у амфибий, ведущих водный образ жизни, аналогичны таковым у рыб.

По материалам:

Андрианов Ю.Н., Ильинский О.Б. Органы боковой линии. Эволюционная физиология. Ч.2. – Л.: Наука, 1983.

Павлов Д.С., Касумян А.О. Изучение поведения и сенсорных систем рыб России. Ч.2. Сенсорные системы. – М.: Изд-во МГУ, 2002.

Касумян А.О. Боковая линии рыб. – М.: Изд-во МГУ, 2003.

 

Рейтинг@Mail.ru
Рейтинг@Mail.ru